スキップしてメイン コンテンツに移動

プラズマの語源って?

プラズマという言葉は、電器店などで耳にすることがあります。「プラズマテレビ」「プラズマイオン」「プラズマクラスター」。。今朝、テレビで「マイコプラズマ」肺炎が流行?!というニュースを耳にしました。「プラズマ」というと、『原子から電子がはぎ取られ、正の電荷を持つイオンと負の電荷を持つ電子が自由勝手気ままに運動している状態(物質の第4の状態)』と思っていたのですが、微生物である「マイコプラズマ」がそんな状態になっているわけはありません。さて?


☆そこで「プラズマ」の語源を調べてみました。まずギリシャ語でした。そしてその意味は「型で作ったもの」「ある形に作ったもの」という意味でした。「マイコ」は「カビの」という意味で、マイコプラズマという微生物を培養するとカビのような形になることから「マイコプラズマ」と名付けられたようです。(専門ではないので、間違っていたらすみません)


☆となると物質の第4の状態を「プラズマ」と呼ぶほうが不思議になってきます。物質の第4の状態に「プラズマ」という名前を付けたのは、アメリカのラングミュア(Langmuir)博士で、1928年の論文で初めて使われました。どうしてそう名付けたのかは、実は定かではありません。あれっ?


☆「プラズマ」という言葉は、中世以来「人間にではなく造物主によって作られたもの」という神秘的な意味合いで使われるようになっていきます。細胞の中の原形質を「プロトプラズム(Protoplasm)」、血液の中の血漿を「ブラッドプラズマ(Blood plasma)」と呼ぶのもこのような神秘的な意味が語源になっているようです。ラングミュア博士もプラズマのゆらゆらした状態を見て、なにか神秘的なものを感じたのではないでしょうか。
(参考:後藤憲一、プラズマ物理学、共立出版)

コメント

ひな さんのコメント…
とてもやくに立ちました!
それで、プラズマのことについて、教えてくれませんか?
・種類・働き・発見者・使用されているもの(商品など)
☆のかけら さんの投稿…
ひなさん、コメントありがとうございます。
質問に上手く答えられるかわかりませんが、頑張ってみます。
☆まずは発見者。
初めて実験でプラズマを作った人:マイケル・ファラデー、1835年
プラズマを物質の第4の状態と名付けた人:ウィリアム・クルックス、1879年
プラズマをプラズマと名付けた人:アーヴィング・ラングミュア、1928年
☆次に働きと使用されているものを一緒にお答えします。
(1)光を発する:蛍光灯、ネオンサイン、プラズマテレビ(ディスプレイ)、高輝度放電ランプ(車のヘッドランプ)、LSI(大規模集積回路)を作るためのリソグラフィ光源(極端紫外光源)、レーザー光源(医療用の光メスなど)
(2)熱を発する:プラズマ溶接・溶断、ゴミ溶融処理、金属の精錬、金属の加工
(3)電気を帯びる:静電集塵機、空気清浄機、プラズマ静電塗装、オゾン発生器、医療用の滅菌
(4)化学反応を起こしやすい:プラズマエッチング、プラズマCVD(太陽電池、LSI、液晶テレビを作るときに使う)、ナノ物質(フラーレン、ナノチューブ)を作る、フロンやダイオキシンなどの有害物質を分解(無害化)する、ダイヤモンド人工合成
(5)力を生む:ロケットエンジン(はやぶさのイオンエンジンもその一つ)
☆以上のような私たちが普段利用しているプラズマは、温度が1万℃前後と低い(1万℃でも低い!)ので、「低温プラズマ」に分類されます。もっと細かく、温度が低いものから「コロナ放電プラズマ」「グロー放電プラズマ」「アーク放電プラズマ」と分類することもあります。これに対して、太陽や星、そして核融合発電で使われるプラズマは1000万℃から1億℃もあるので、「高温プラズマ」に分類されます。プラズマの種類はというとこんな感じかな。
(日刊工業新聞社の「トコトンやさしいプラズマの本」を参考にしました)
匿名 さんのコメント…
とっても分かりやすかったです!

これからも、沢山このブログを見て行って、勉強したいと思います!

ありがとうございます!

最近1ヶ月でよく読まれている投稿

核融合と核分裂の違い

★原子力発電所の事故以来、『核分裂』と言うべきところを『核融合』と言い間違えている発言をよく耳にするので、ここはしっかりと訂正しておきたいと思います。(こんな時期なので黙っておこうと思ったのですが、わたしにも少しは主張する権利があると思い・・) ★原子力発電所で起こる反応は『核分裂(カクブンレツ)』です。ウランのような重たい原子核が分裂して2つに割れることを『核分裂』といいます。(上側の絵)原子力発電所で『核融合』が起こることはありえません。(原子力発電所で起きた水素爆発は、水素と酸素の化学反応で、核融合ではありません)ついでに高速増殖炉(もんじゅ)も『核分裂』です。 ☆『核融合(カクユウゴウ)』は、水素のような軽い原子核が二つくっついて、一つになることです。(下側の絵)今、 世界中で研究 が行なわれている 『核融合』発電 は、水素をくっつけて(融合して)、ヘリウムにする 制御された 核融合反応 を使います。その時、『核分裂』を使うことはありません。 ☆だから、次のことは自明です。 『核融合』発電ではウランを使いません 。だから、 爆発もしない し、 暴走もしない し、連鎖反応もしないし、再臨界もしないし、メルトダウンもしないし、核燃料もないし、核物質もないし、核不拡散問題もないし、高レベル放射性廃棄物もありません。 【水素爆弾との違いは 私の別の記事 を参照ください】 ☆初期(まだ実現まで25~30年くらいかかるけど)の『核融合』発電も、 トリチウム(三重水素) という放射性物質(半減期が12年)を扱うため、100%クリーンとはいえません。しかし、放射能漏れによる潜在的リスク(発電所が保有する放射性物質の強さの合計)は原子力発電の1000分の1以下です。だから 最悪の事故 を考えても、周辺住民が避難するような事態にはなりません。

核融合と核分裂のエネルギー比較

核融合も 核分裂 も 原子核の質量欠損 を使ったエネルギーなので、少量の燃料で大きなエネルギーを得ることができます。工学的に大きな意味はないのですが、核融合と核分裂のエネルギーを比較してみましょう。 1個のウラン(U)原子核が核分裂したときに発生するエネルギーは、約200MeV(メガ電子ボルト)です。(MeVは物理で使うエネルギーの単位です。大きさを比較するだけなので、ここでは詳しい説明は省略します)一方、1個の 重水素 (2H)原子核と1個の 三重水素 (3H)原子核が核融合したときに発生するエネルギーは、約17MeVです。そうです、1回の反応で発生するエネルギーは、核分裂の方が核融合より約10倍大きいことが分かります。 ところが、こんな比較もできるのです。同じ燃料の重さから発生するエネルギーの比較です。ウランは水素よりかなり重たいので、燃料の単位重さ当たりで発生するエネルギーは、逆に核融合の方が核分裂より4倍大きくなります。 もっと分かりやすく表現すると、核分裂の燃料ウラン1グラムは「石炭3トン分」のエネルギーに相当します。一方、核融合の燃料(水素)1グラムは「石炭13トン分」に相当します。さらに、これは「石油約8トン分」です。いずれにしても、少ない燃料で大きなエネルギーが得られることにかわりありません。 ※ここでは反応で生まれるエネルギーを計算しました。発電所で電気エネルギーに変換すると、発電効率がかけ算されるので、少し数字が変わります。

空の太陽と地上の太陽「核融合発電」の違い

☆太陽中心では、4個の水素の原子核が融合して、最終的にヘリウムに変わる核融合反応(原子核が融合する反応)が進行しています。このとき、約0.7%の 質量が消失 して、そのエネルギーが光(電磁波)として放出されています。今も太陽は、1秒間に約42億キログラムずつ軽くなっているそうです [1]。でも太陽は想像以上に巨大なので、あと50億年は核融合反応を続けられます。 太陽中心で起こっている核融合反応 ☆ところがこの反応(特に最初の水素同士の融合反応)は、非常にまれにしか起こりません。個々の水素原子核について見ると、その寿命が10億年、つまり10億年に1回くらいしか反応しないそうです。だから、太陽の中心のエネルギー発生密度は、1立方メートルあたり270ワットしかありません [2]。(ちなみに人間は約1,000ワット)これでは、たとえ小さな太陽を地上に作ったとしてもエネルギー源にはならないことは明白です。 ☆そこで、地上の太陽「 核融合発電 」では、普通の水素ではなく、その同位体である 重水素 と 三重水素 の核融合反応を使います。(重水素の記号Dと三重水素の記号Tを使ってD-T反応とも言います)これが一番起こしやすい、確率の高い反応だからです。幸い地球上には初期の宇宙で作られた重水素が残っていました。海には50兆トンもの重水素があります。三重水素は、自然界にあまり存在しませんが、同じく海水に含まれる2,000億トンの リチウムから生産 することができます。地球上には奇跡的に核融合発電に使用できる燃料が存在していたのです。もし、これらが地球上に存在しなければ、核融合発電の構想は生まれなかったでしょう。 地上の太陽「核融合発電」で用いる核融合反応 ☆D-T反応では、 中性子 とヘリウムが発生しますが、 中性子の運動エネルギーを熱エネルギーに変換 して発電に使います。一方、ヘリウムの運動エネルギーは、プラズマの温度を維持するために使われます。いずれにしても、この反応は 核分裂反応 と異なり、中性子を介在した連鎖反応でないことが分かります。従って、止めることが容易であり、原理的に暴走しません。 参考文献 [1] Newton別冊「アインシュタインの世界一有名な式 E=mc2」 [2] ローレンス・リバモア国立研究のWebペ

重水素燃料を海水から取り出すためのエネルギー

☆ 核融合発電 の 燃料 は 重水素(水素の同位体) ガスです。海水中に無尽蔵に存在するため、枯渇する心配がありません。ところが、水素の中の重水素の存在比率は0.015%しかありません。「重水素を抽出するために、莫大なエネルギーを使わないのですか?」と質問をされることがあります。その質問にお答えしたいと思います。 ☆上の絵は、水の中の分子の様子を表したものです。ほとんどの水分子では、水素(青い玉)2個と酸素(黄色い玉)1個がくっついている状態が、ほんの一部だけは重水素(赤い玉)と酸素がくっついています。この重水素と酸素が結合した水のことを「重水」と呼びます。また普通の水素でできた水を「軽水」と呼びます。(「重水」と「重水素」は違うものですのでご注意ください。また実際には水素1個と重水素1個と酸素1個が結合した水分子があるのですが、話しを簡単にするためにここでは省略します。) ☆「軽水」と「重水」を分離する技術は、すでに工業化されています。新しい方法としては、電気分解を使う方法があります。電気分解(電気で水素と酸素に分解すること)すると、「重水」より「軽水」の方が早く分解します。だから部分的な電気分解を繰り返すと「重水」だけが濃縮されて残っていくというしくみです。 ☆「重水」ができれば、後はこれを、完全に電気分解すれば「重水素」ガスと酸素ガスに分解できます。重水素はこうのようにして生産されます。 ☆さて問題は、重水素の生産に必要なエネルギーです。生産過程では「重水」生産がほとんどのエネルギーを使います。論文で調べると、1kgの重水を生産するのに必要なエネルギーは57MWh(メガワット時)ということでした。一方、1kgの重水には200gの重水素が含まれてます。この重水素を使って核融合反応を起こすと38,000MWhのエネルギーが発生します。これは重水生産に必要なエネルギー(57MWh)の約700倍になります。つまり、燃料生産に必要なエネルギーは、発電されるエネルギーに対して十分に小さいという結果になります。 (参考:R. Dutton他、Nuclear Engineering and Design 144 (1993) 269)

1億度ってどんな温度?

☆ 核融合発電 では1億度の水素の プラズマ を使いますと見学者に説明すると、びっくりされます。1億度という温度が容易にイメージできないからです。そしてそのことを怖がる人もいます。だからプラズマを温度で表現するのは慎重にしないといけないようです。 ☆気体は目に見えませんが、小さな粒子(分子)がある速度で動き回っています。上の絵のように、色々な方向に飛び回っています。私たちの周りの空気(窒素分子と酸素分子がほとんど)だと秒速300メートルほどです。でも空気の粒子が当たって痛いと思う人はいませんよね。(これって不思議です) ☆さて、気体の温度が高くなると、粒子の速度も速くなっていきます。 プラズマ になって、イオンと電子に分離しても、粒子の速度は温度が高くなるにつれて速くなっていきます。(イオンと電子の速度が同じとは限りません。)例えば「蛍光灯」は身近なプラズマの代表ですが、中の粒子(電子)は、1万度の温度になったときと同じ速度(毎秒600キロメートル)で走っています。『蛍光灯が1万度?』またまた話しがややこしくなってきました。蛍光灯を触っても、火傷するほど熱くはないですよね。 ☆私たちが熱いとか冷たいとか感じるのは、温度だけでなく、(温度)×(粒子の数)が関係しているのです。(熱の伝わりやすさも関係しますが・・)蛍光灯の中に1万度の電子がいても、その数がものすごく少なければ、熱くなりません。実際にものすごく少ないのですが。 ☆さて、核融合発電のプラズマは、粒子(原子核)の数(密度)が空気の10万分の1くらいしかありません。(真空と言ってもよい状態なのです)1億度の温度とかけ算すると、熱いことは間違いないですが、想像を超える熱さではありません。ちなみに、 大型ヘリカル装置 でできた最もエネルギーの高い(熱い)プラズマは、200リットルのお風呂のお湯の温度を2度上げるくらいのエネルギーしかもっていません。だから1億度といっても、 周りのものを溶かしてしまうような力は持っていない のです。(安心してください) ☆だったら、どうしてエネルギー源になるの?という質問が来そうです。 核融合発電所 のプラズマで 核融合反応 が起こったときにできる 中性子 、これがある速度を持っていて、プラズマから外に飛び出してきます。その中性子を ブランケット